What is My IP....?
Solar Power...... Solar vehicles2
Solar Power...... Solar vehicles
Solar energy...Trans-Neptunian region
Solar energy...Outer planets2
Solar energy...Outer planets
Solar system... Outer Solar System
Solar System.... Solar chemical
Solar Power..... Experimental solar power
Solar System.....Ceres
Solar System..... Asteroid belt.
Asteroids are mostly small Solar System bodies composed mainly of rocky and metallic non-volatile minerals.The main asteroid belt occupies the orbit between Mars and Jupiter, between 2.3 and 3.3 AU from the Sun. It is thought to be remnants from the Solar System's formation that failed to coalesce because of the gravitational interference of Jupiter.Asteroids range in size from hundreds of kilometres across to microscopic. All asteroids save the largest, Ceres, are classified as small Solar System bodies, but some asteroids such as Vesta and Hygieia may be reclassed as dwarf planets if they are shown to have achieved hydrostatic equilibrium.
Solar System..... Inner planets2
Solar System..... Inner planets
Solar System...... Inner Solar System
Solar System.....Interplanetary medium
Aurora australis seen from orbit.Earth's magnetic field stops its atmosphere from being stripped away by the solar wind. Venus and Mars do not have magnetic fields, and as a result, the solar wind causes their atmospheres to gradually bleed away into space.The interaction of the solar wind with Earth's magnetic field funnels charged particles at right angles to the Earth's upper atmosphere, where its interactions create aurorae seen near the magnetic poles.Cosmic rays originate outside the Solar System. The heliosphere partially shields the Solar System, and planetary magnetic fields (for those planets that have them) also provide some protection. The density of cosmic rays in the interstellar medium and the strength of the Sun's magnetic field change on very long timescales, so the level of cosmic radiation in the Solar System varies, though by how much is unknown.The interplanetary medium is home to at least two disc-like regions of cosmic dust. The first, the zodiacal dust cloud, lies in the inner Solar System and causes zodiacal light. It was likely formed by collisions within the asteroid belt brought on by interactions with the planets.The second extends from about 10 AU to about 40 AU, and was probably created by similar collisions within the Kuiper belt.
Solar System..... Sun
Solar System.......Terminology...
Solar System.......Structure. (solar system).
Solar. Discovery and exploration......
Solar System..........
Solar System.......Applications of solar technology
Solar energy...
Solar System.......Energy storage methods.
Solar System.......Development, deployment and economics...
Solar System.......Experimental solar power.....
Solar System.......(Photovoltaics............)
A solar cell, or photovoltaic cell (PV), is a device that converts light into electric current using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s.[18] Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery.[19] Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the silicon solar cell in 1954.[20] These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%.
Solar power has great potential, but in 2008 supplied less than 0.02% of the world's total energy supply. There are many competing technologies, including fourteen types of photovoltaic cells, such as thin film, monocrystalline silicon, polycrystalline silicon, and amorphous cells, as well as multiple types of concentrating solar power. It is too early to know which technology will become dominant.
The earliest significant application of solar cells was as a back-up power source to the Vanguard I satellite in 1958, which allowed it to continue transmitting for over a year after its chemical battery was exhausted.[23] The successful operation of solar cells on this mission was duplicated in many other Soviet and American satellites, and by the late 1960s, PV had become the established source of power for them.[24] Photovoltaics went on to play an essential part in the success of early commercial satellites such as Telstar, and they remain vital to the telecommunications infrastructure today.
Building-integrated photovoltaics cover the roofs of an increasing number of homes.The high cost of solar cells limited terrestrial uses throughout the 1960s. This changed in the early 1970s when prices reached levels that made PV generation competitive in remote areas without grid access. Early terrestrial uses included powering telecommunication stations, off-shore oil rigs, navigational buoys and railroad crossings.[26] These off-grid applications accounted for over half of worldwide installed capacity until 2004.
The 1973 oil crisis stimulated a rapid rise in the production of PV during the 1970s and early 1980s.[28] Economies of scale which resulted from increasing production along with improvements in system performance brought the price of PV down from 100 USD/watt in 1971 to 7 USD/watt in 1985.[29] Steadily falling oil prices during the early 1980s led to a reduction in funding for photovoltaic R&D and a discontinuation of the tax credits associated with the Energy Tax Act of 1978. These factors moderated growth to approximately 15% per year from 1984 through 1996.
Since the mid-1990s, leadership in the PV sector has shifted from the US to Japan and Europe. Between 1992 and 1994 Japan increased R&D funding, established net metering guidelines, and introduced a subsidy program to encourage the installation of residential PV systems.[31] As a result, PV installations in the country climbed from 31.2 MW in 1994 to 318 MW in 1999,[32] and worldwide production growth increased to 30% in the late 1990s.
Concentrating photovoltaics in Catalonia, Spain.Germany became the leading PV market worldwide since revising its Feed-in tariff system as part of the Renewable Energy Sources Act. Installed PV capacity has risen from 100 MW in 2000 to approximately 4,150 MW at the end of 2007.[34][35] After 2007, Spain became the largest PV market after adopting a similar feed-in tariff structure in 2004, installing almost half of the photovoltaics (45%) in the world, in 2008, while France, Italy, South Korea and the U.S. have seen rapid growth recently due to various incentive programs and local market conditions.[36] The power output of domestic photovoltaic devices is usually described in kilowatt-peak (kWp) units, as most are from 1 to 10 kW.
Concentrating photovoltaics are another new method of electricity generation from the sun. Concentrating photovoltaics (CPV) systems employ sunlight concentrated onto photovoltaic surfaces for the purpose of electrical power production. Solar concentrators of all varieties may be used, and these are often mounted on a solar tracker in order to keep the focal point upon the cell as the Sun moves across the sky. Tracking is not required for concentrations of less than 2 to 5, but does increase flat panel photovoltaic output by up to 20% in winter, and up to 50% in summer.[38]
Solar System.......(Concentrating solar power)
Solar troughs are the most widely deployed.A legend claims that Archimedes used polished shields to concentrate sunlight on the invading Roman fleet and repel them from Syracuse.[7] Auguste Mouchout used a parabolic trough to produce steam for the first solar steam engine in 1866.
Concentrating Solar Power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. The concentrated heat is then used as a heat source for a conventional power plant. A wide range of concentrating technologies exists; the most developed are the parabolic trough, the concentrating linear fresnel reflector, the Stirling dish and the solar power tower. Various techniques are used to track the Sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage.
A parabolic trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector's focal line. The receiver is a tube positioned right above the middle of the parabolic mirror and is filled with a working fluid. The reflector is made to follow the Sun during the daylight hours by tracking along a single axis. Parabolic trough systems provide the best land-use factor of any solar technology.[10] The SEGS plants in California and Acciona's Nevada Solar One near Boulder City, Nevada are representatives of this technology.[11][12] The Suntrof-Mulk parabolic trough, developed by Melvin Prueitt, uses a technique inspired by Archimedes' principle to rotate the mirrors.[13]
Concentrating linear fresnel reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating linear fresnel reflectors can be used in either large or more compact plants. A stirling solar dish, or dish engine system, consists of a stand-alone parabolic reflector that concentrates light onto a receiver positioned at the reflector's focal point. The reflector tracks the Sun along two axes. Parabolic dish systems give the highest efficiency among CSP technologies.[16]
The 50 kW Big Dish in Canberra, Australia is an example of this technology.[11] The stirling solar dish combines a parabolic concentrating dish with a stirling heat engine which normally drives an electric generator. The advantages of stirling solar over photovoltaic cells are higher efficiency of converting sunlight into electricity and longer lifetime.A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers are more cost effective, offer higher efficiency and better energy storage capability among CSP technologies.[11] The Solar Two in Barstow, California and the Planta Solar 10 in Sanlucar la Mayor, Spain are representatives of this technology.
Solar Power
Solar power is a predictably intermittent energy source, meaning that whilst solar power is not available at all times, we can predict with a very good degree of accuracy when it will and will not be available. Some technologies, such as solar thermal concentrators with an element of thermal storage, have the potential to eliminate the intermittency of solar power, by storing spare solar power in the form of heat; and using this heat overnight or during periods that solar power is not available to produce electricity. This technology has the potential to make solar power "dispatchable", as the heat source can be used to generate electricity at will. Solar power installations are normally supplemented by storage or another energy source, for example with wind power and hydropower.