My Search...........

If Need anything.. SEARCH Here..

What is My IP....?

Solar Power...... Solar vehicles2

Solar Power...... Solar vehicles2
In 1974, the unmanned Sunrise II plane made the first solar flight. On 29 April 1979, the Solar Riser made the first flight in a solar powered, fully controlled, man carrying flying machine, reaching an altitude of 40 feet (12 m). In 1980, the Gossamer Penguin made the first piloted flights powered solely by photovoltaics. This was quickly followed by the Solar Challenger which crossed the English Channel in July 1981. In 1990 Eric Raymond in 21 hops flew from California to North Carolina using solar power.[89] Developments then turned back to unmanned aerial vehicles (UAV) with the Pathfinder (1997) and subsequent designs, culminating in the Helios which set the altitude record for a non-rocket-propelled aircraft at 29,524 metres (96,860 ft) in 2001.[90] The Zephyr, developed by BAE Systems, is the latest in a line of record-breaking solar aircraft, making a 54-hour flight in 2007, and month-long flights are envisioned by 2010.A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high.Solar sails are a proposed form of spacecraft propulsion using large membrane mirrors to exploit radiation pressure from the Sun. Unlike rockets, solar sails require no fuel. Although the thrust is small compared to rockets, it continues as long as the Sun shines onto the deployed sail and in the vacuum of space significant speeds can eventually be achieved.The High-altitude airship (HAA) is an unmanned, long-duration, lighter-than-air vehicle using helium gas for lift, and thin-film solar cells for power. The United States Department of Defense Missile Defense Agency has contracted Lockheed Martin to construct it to enhance the Ballistic Missile Defense System (BMDS). Airships have some advantages for solar-powered flight: they do not require power to remain aloft, and an airship's envelope presents a large area to the Sun.

Solar Power...... Solar vehicles

Solar Power...... Solar vehicles
Development of a solar powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph).[80] The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.Some vehicles use solar panels for auxiliary power, such as for air conditioning, to keep the interior cool, thus reducing fuel consumption.In 1975, the first practical solar boat was constructed in England. By 1995, passenger boats incorporating PV panels began appearing and are now used extensively. In 1996, Kenichi Horie made the first solar powered crossing of the Pacific Ocean, and the sun21 catamaran made the first solar powered crossing of the Atlantic Ocean in the winter of 2006–2007.[87] There are plans to circumnavigate the globe in 2010.

Solar energy...Trans-Neptunian region

Solar energy...Trans-Neptunian region

The area beyond Neptune, or the "trans-Neptunian region", is still largely unexplored. It appears to consist overwhelmingly of small worlds (the largest having a diameter only a fifth that of the Earth and a mass far smaller than that of the Moon) composed mainly of rock and ice. This region is sometimes known as the "outer Solar System", though others use that term to mean the region beyond the asteroid belt.

Solar energy...Outer planets2

Solar energy...Outer planets2
Jupiter
Jupiter (5.2 AU), at 318 Earth masses, is 2.5 times all the mass of all the other planets put together. It is composed largely of hydrogen and helium. Jupiter's strong internal heat creates a number of semi-permanent features in its atmosphere, such as cloud bands and the Great Red Spot. Jupiter has sixty-three known satellites. The four largest, Ganymede, Callisto, Io, and Europa, show similarities to the terrestrial planets, such as volcanism and internal heating.[53] Ganymede, the largest satellite in the Solar System, is larger than Mercury.
Saturn
Saturn (9.5 AU), distinguished by its extensive ring system, has several similarities to Jupiter, such as its atmospheric composition and magnetosphere. Although Saturn has 60% of Jupiter's volume, it is less than a third as massive, at 95 Earth masses, making it the least dense planet in the Solar System. Saturn has sixty known satellites (and three unconfirmed); two of which, Titan and Enceladus, show signs of geological activity, though they are largely made of ice.[54] Titan is larger than Mercury and the only satellite in the Solar System with a substantial atmosphere.
Uranus
Uranus (19.6 AU), at 14 Earth masses, is the lightest of the outer planets. Uniquely among the planets, it orbits the Sun on its side; its axial tilt is over ninety degrees to the ecliptic. It has a much colder core than the other gas giants, and radiates very little heat into space.[55] Uranus has twenty-seven known satellites, the largest ones being Titania, Oberon, Umbriel, Ariel and Miranda.
Neptune
Neptune (30 AU), though slightly smaller than Uranus, is more massive (equivalent to 17 Earths) and therefore more dense. It radiates more internal heat, but not as much as Jupiter or Saturn.[56] Neptune has thirteen known satellites. The largest, Triton, is geologically active, with geysers of liquid nitrogen.[57] Triton is the only large satellite with a retrograde orbit. Neptune is accompanied in its orbit by a number of minor planets, termed Neptune Trojans, that are in 1:1 resonance with it.

Solar energy...Outer planets

Outer planets
Outer planets
From top to bottom: Neptune, Uranus, Saturn, and Jupiter (not to scale) The four outer planets, or gas giants (sometimes called Jovian planets), collectively make up 99 percent of the mass known to orbit the Sun. Jupiter and Saturn consist overwhelmingly ofhydrogen and helium; Uranus and Neptune possess a greater proportion of ices in their makeup. Some astronomers suggest they belong in their own category, “ice giants.”[52] All four gas giants have rings, although only Saturn's ring system is easily observed from Earth. The term outer planet should not be confused with superior planet, which designates planets outside Earth's orbit (the outer planets and Mars).
Created by ( Khurram Shahab Rana)

Solar system... Outer Solar System

Solar system... Outer Solar System
The outer region of the Solar System is home to the gas giants and their planet-sized satellites. Many short period comets, including the centaurs, also orbit in this region. Due to their greater distance from the Sun, the solid objects in the outer Solar System are composed of a higher proportion of volatiles (such as water, ammonia, methane, often called ices in planetary science) than the rocky denizens of the inner Solar System, as the colder temperatures allow these compounds to remain solid.
Created by (Khurram Shahab Rana)

Solar System.... Solar chemical

Solar chemical
Solar chemical
Solar chemical processes use solar energy to drive chemical reactions. These processes offset energy that would otherwise come from an alternate source and can convert solar energy into storable and transportable fuels. Solar induced chemical reactions can be divided into thermochemical or photochemical. Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2300-2600 °C).[74] Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods.Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1200 °C. This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen.

Sandia's Sunshine to Petrol (S2P) technology uses the high temperatures generated by concentrating sunlight along with a zirconia/ferrite catalyst to break down atmospheric carbon dioxide into oxygen and carbon monoxide (CO). The carbon monoxide can then be used to synthesize conventional fuels such as methanol, gasoline and jet fuel.A photogalvanic device is a type of battery in which the cell solution (or equivalent) forms energy-rich chemical intermediates when illuminated. These energy-rich intermediates can potentially be stored and subsequently reacted at the electrodes to produce an electric potential. The ferric-thionine chemical cell is an example of this technology.Photoelectrochemical cells or PECs consist of a semiconductor, typically titanium dioxide or related titanates, immersed in an electrolyte. When the semiconductor is illuminated an electrical potential develops. There are two types of photoelectrochemical cells: photoelectric cells that convert light into electricity and photochemical cells that use light to drive chemical reactions such as electrolysis.

Solar Power..... Experimental solar power

Solar Power..... Experimental solar power
A solar pond is a pool of salt water (usually 1–2 m deep) that collects and stores solar energy. Solar ponds were first proposed by Dr. Rudolph Bloch in 1948 after he came across reports of a lake in Hungary in which the temperature increased with depth. This effect was due to salts in the lake's water, which created a "density gradient" that prevented convection currents. A prototype was constructed in 1958 on the shores of the Dead Sea near Jerusalem.[69] The pond consisted of layers of water that successively increased from a weak salt solution at the top to a high salt solution at the bottom. This solar pond was capable of producing temperatures of 90 °C in its bottom layer and had an estimated solar-to-electric efficiency of two percent.

Thermoelectric, or "thermovoltaic" devices convert a temperature difference between dissimilar materials into an electric current. First proposed as a method to store solar energy by solar pioneer Mouchout in the 1800s,[70] thermoelectrics reemerged in the Soviet Union during the 1930s. Under the direction of Soviet scientist Abram Ioffe a concentrating system was used to thermoelectrically generate power for a 1 hp engine.[71] Thermogenerators were later used in the US space program as an energy conversion technology for powering deep space missions such as Cassini, Galileo and Viking. Research in this area is focused on raising the efficiency of these devices from 7–8% to 15–20%.[72]

Solar System.....Ceres

Solar System.....Ceres
Ceres
Ceres (2.77 AU) is the largest body in the asteroid belt and is classified as a dwarf planet. It has a diameter of slightly under 1000 km, large enough for its own gravity to pull it into a spherical shape. Ceres was considered a planet when it was discovered in the 19th century, but was reclassified as an asteroid in the 1850s as further observation revealed additional asteroids.[50] It was again reclassified in 2006 as a dwarf planet.
Asteroid groups.
Asteroids in the main belt are divided into asteroid groups and families based on their orbital characteristics. Asteroid moons are asteroids that orbit larger asteroids. They are not as clearly distinguished as planetary moons, sometimes being almost as large as their partners. The asteroid belt also contains main-belt comets which may have been the source of Earth's water.Trojan asteroids are located in either of Jupiter's L4 or L5 points (gravitationally stable regions leading and trailing a planet in its orbit); the term "Trojan" is also used for small bodies in any other planetary or satellite Lagrange point. Hilda asteroids are in a 2:3 resonance with Jupiter; that is, they go around the Sun three times for every two Jupiter orbits.The inner Solar System is also dusted with rogue asteroids, many of which cross the orbits of the inner planets.

Solar System..... Asteroid belt.

Solar System..... Asteroid belt.

Asteroids are mostly small Solar System bodies composed mainly of rocky and metallic non-volatile minerals.The main asteroid belt occupies the orbit between Mars and Jupiter, between 2.3 and 3.3 AU from the Sun. It is thought to be remnants from the Solar System's formation that failed to coalesce because of the gravitational interference of Jupiter.Asteroids range in size from hundreds of kilometres across to microscopic. All asteroids save the largest, Ceres, are classified as small Solar System bodies, but some asteroids such as Vesta and Hygieia may be reclassed as dwarf planets if they are shown to have achieved hydrostatic equilibrium.

The asteroid belt contains tens of thousands, possibly millions, of objects over one kilometre in diameter.Despite this, the total mass of the main belt is unlikely to be more than a thousandth of that of the Earth.The main belt is very sparsely populated; spacecraft routinely pass through without incident. Asteroids with diameters between 10 and 10−4 m are called meteoroids.

Solar System..... Inner planets2

Mercury
Mercury (0.4 AU) is the closest planet to the Sun and the smallest planet (0.055 Earth masses). Mercury has no natural satellites, and its only known geological features besides impact craters are lobed ridges or rupes, probably produced by a period of contraction early in its history.[33] Mercury's almost negligible atmosphere consists of atoms blasted off its surface by the solar wind.[34] Its relatively large iron core and thin mantle have not yet been adequately explained. Hypotheses include that its outer layers were stripped off by a giant impact, and that it was prevented from fully accreting by the young Sun's energy.
Venus
Venus (0.7 AU) is close in size to Earth, (0.815 Earth masses) and like Earth, has a thick silicate mantle around an iron core, a substantial atmosphere and evidence of internal geological activity. However, it is much drier than Earth and its atmosphere is ninety times as dense. Venus has no natural satellites. It is the hottest planet, with surface temperatures over 400 °C, most likely due to the amount of greenhouse gases in the atmosphere.[37] No definitive evidence of current geological activity has been detected on Venus, but it has no magnetic field that would prevent depletion of its substantial atmosphere, which suggests that its atmosphere is regularly replenished by volcanic eruptions.
Earth
Earth (1 AU) is the largest and densest of the inner planets, the only one known to have current geological activity, and is the only place in the universe where life is known to exist.[39] Its liquid hydrosphere is unique among the terrestrial planets, and it is also the only planet where plate tectonics has been observed. Earth's atmosphere is radically different from those of the other planets, having been altered by the presence of life to contain 21% free oxygen.[40] It has one natural satellite, the Moon, the only large satellite of a terrestrial planet in the Solar System.
Mars
Mars (1.5 AU) is smaller than Earth and Venus (0.107 Earth masses). It possesses a tenuous atmosphere of mostly carbon dioxide. Its surface, peppered with vast volcanoes such as Olympus Mons and rift valleys such as Valles Marineris, shows geological activity that may have persisted until very recently.[41] Its red colour comes from iron oxide (rust) in its soil.[42] Mars has two tiny natural satellites (Deimos and Phobos) thought to be captured asteroids.[43]

Solar System..... Inner planets

Solar System..... Inner planets
The four inner or terrestrial planets have dense, rocky compositions, few or no moons, and no ring systems. They are composed largely of minerals with high melting points, such as the silicates which form their crusts and mantles, and metals such as iron and nickel, which form their cores. Three of the four inner planets (Venus, Earth and Mars) have substantial atmospheres; all have impact craters and tectonic surface features such as rift valleys and volcanoes. The term inner planet should not be confused with inferior planet, which designates those planets which are closer to the Sun than Earth is (i.e. Mercury and Venus).

Solar System...... Inner Solar System

Solar System...... Inner Solar System
The inner Solar System is the traditional name for the region comprising the terrestrial planets and asteroids.[32] Composed mainly of silicates and metals, the objects of the inner Solar System huddle very closely to the Sun; the radius of this entire region is shorter than the distance between Jupiter and Saturn.

Solar System.....Interplanetary medium

Solar System.....Interplanetary medium
Along with light, the Sun radiates a continuous stream of charged particles (a plasma) known as the solar wind. This stream of particles spreads outwards at roughly 1.5 million kilometres per hour, creating a tenuous atmosphere (the heliosphere) that permeates the Solar System out to at least 100 AU (see heliopause).This is known as the interplanetary medium. Geomagnetic storms on the Sun's surface, such as solar flares and coronal mass ejections, disturb the heliosphere, creating space weather. The largest structure within the heliosphere is the heliospheric current sheet, a spiral form created by the actions of the Sun's rotating magnetic field on the interplanetary medium.


Aurora australis seen from orbit.Earth's magnetic field stops its atmosphere from being stripped away by the solar wind. Venus and Mars do not have magnetic fields, and as a result, the solar wind causes their atmospheres to gradually bleed away into space.The interaction of the solar wind with Earth's magnetic field funnels charged particles at right angles to the Earth's upper atmosphere, where its interactions create aurorae seen near the magnetic poles.Cosmic rays originate outside the Solar System. The heliosphere partially shields the Solar System, and planetary magnetic fields (for those planets that have them) also provide some protection. The density of cosmic rays in the interstellar medium and the strength of the Sun's magnetic field change on very long timescales, so the level of cosmic radiation in the Solar System varies, though by how much is unknown.The interplanetary medium is home to at least two disc-like regions of cosmic dust. The first, the zodiacal dust cloud, lies in the inner Solar System and causes zodiacal light. It was likely formed by collisions within the asteroid belt brought on by interactions with the planets.The second extends from about 10 AU to about 40 AU, and was probably created by similar collisions within the Kuiper belt.

Solar System..... Sun

in the solar system the Sun.....
The Sun is the Solar System's star, and far and away its chief component. Its large mass (332,900 Earth masses)[15] gives it an interior density high enough to sustain nuclear fusion, which releases enormous amounts of energy, mostly radiated into space as electromagnetic radiation, peaking in the 400–to–700 nm band we call visible light.[16]The Sun is classified as a moderately large yellow dwarf, but this name is misleading as, compared to majority of stars in our galaxy, the Sun is rather large and bright.[17] Stars are classified by the Hertzsprung-Russell diagram, a graph which plots the brightness of stars against their surface temperatures. Generally, hotter stars are brighter. Stars following this pattern are said to be on the main sequence, and the Sun lies right in the middle of it. However, stars brighter and hotter than the Sun are rare, while substantially dimmer and cooler stars, known as red dwarfs, are common, making up 85 percent of the stars in the galaxy.[17][18]It is believed that the Sun's position on the main sequence puts it in the "prime of life" for a star, in that it has not yet exhausted its store of hydrogen for nuclear fusion. The Sun is growing brighter; early in its history it was 70 percent as bright as it is today.[19]The Sun is a population I star; it was born in the later stages of the universe's evolution, and thus contains more elements heavier than hydrogen and helium ("metals" in astronomical parlance) than older population II stars. Elements heavier than hydrogen and helium were formed in the cores of ancient and exploding stars, so the first generation of stars had to die before the universe could be enriched with these atoms. The oldest stars contain few metals, while stars born later have more. This high metallicity is thought to have been crucial to the Sun's developing a planetary system, because planets form from accretion of metals.

Solar System.......Terminology...

Terminology...
Informally, the Solar System is sometimes divided into separate regions. The inner Solar System includes the four terrestrial planets and the main asteroid belt. The outer Solar System is beyond the asteroids, including the four gas giant planets.Since the discovery of the Kuiper belt, the outermost parts of the Solar System are considered a distinct region consisting of the objects beyond Neptune.Dynamically and physically, objects orbiting the Sun are officially classed into three categories: planets, dwarf planets and small Solar System bodies.

A planet is any body in orbit around the Sun that has enough mass to form itself into a spherical shape and has cleared its immediate neighbourhood of all smaller objects. By this definition, the Solar System has eight known planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Pluto does not fit this definition, as it has not cleared its orbit of surrounding Kuiper belt objects. A dwarf planet is a celestial body orbiting the Sun that is massive enough to be rounded by its own gravity but which has not cleared its neighbouring region of planetesimals and is not a satellite.

By this definition, the Solar System has five known dwarf planets: Ceres, Pluto, Haumea, Makemake, and Eris. Other objects may be classified in the future as dwarf planets, such as Sedna, Orcus, and Quaoar. Dwarf planets that orbit in the trans-Neptunian region are called "plutoids". The remainder of the objects in orbit around the Sun are small Solar System bodies.

The regions (or zones) of the Solar system: the inner solar system, the asteroid belt, the giant planets (Jovians) and the Kuiper belt. Sizes and orbits not to scale, view is tilted.Planetary scientists use the terms gas, ice, and rock to describe the various classes of substances found throughout the Solar System.Rock is used to describe compounds with high melting points that remained solid under almost all conditions in the protoplanetary nebula.[12] Rocky substances typically include silicates and metals such as iron and nickel.

They are prevalent in the inner Solar System, forming most of the terrestrial planets and asteroids. Gases are materials with extremely low melting points and high vapor pressure such as molecular hydrogen, helium, and neon, which were always in the gaseous phase in the nebula.They dominate the middle region, comprising most of Jupiter and Saturn. Ices, like water, methane, ammonia, hydrogen sulfide and carbon dioxide,have melting points up to a few hundred kelvins, while their phase depends on the ambient pressure and temperature.

They can be found as ices, liquids, or gases in various places in the Solar System, while in the nebula they were either in the solid or gaseous phase.Icy substances comprise the majority of the satellites of the giant planets, as well as most of Uranus and Neptune (the so-called "ice giants") and the numerous small objects that lie beyond Neptune's orbit.Together, gases and ices are referred to as volatiles.

Solar System.......Structure. (solar system).

Structure. (solar system).
The principal component of the Solar System is the Sun, a main sequence G2 star that contains 99.86 percent of the system's known mass and dominates it gravitationally.The Sun's four largest orbiting bodies, the gas giants, account for 99 percent of the remaining mass, with Jupiter and Saturn together comprising more than 90 percent.Most large objects in orbit around the Sun lie near the plane of Earth's orbit, known as the ecliptic. The planets are very close to the ecliptic while comets and Kuiper belt objects are frequently at significantly greater angles to it.

All of the planets and most other objects also orbit with the Sun's rotation (counter-clockwise, as viewed from above the Sun's north pole). There are exceptions, such as Halley's Comet.Kepler's laws of planetary motion describe the orbits of objects about the Sun. According to Kepler's laws, each object travels along an ellipse with the Sun at one focus. Objects closer to the Sun (with smaller semi-major axes) have shorter years. On an elliptical orbit, a body's distance from the Sun varies over the course of its year. A body's closest approach to the Sun is called its perihelion, while its most distant point from the Sun is called its aphelion. Each body moves fastest at its perihelion and slowest at its aphelion. The orbits of the planets are nearly circular, but many comets, asteroids and Kuiper belt objects follow highly elliptical orbits.

To cope with the vast distances involved, many representations of the Solar System show orbits the same distance apart. In reality, with a few exceptions, the farther a planet or belt is from the Sun, the larger the distance between it and the previous orbit. For example, Venus is approximately 0.33 astronomical units (AU)[d] farther out than Mercury, while Saturn is 4.3 AU out from Jupiter, and Neptune lies 10.5 AU out from Uranus. Attempts have been made to determine a correlation between these orbital distances (see Titius-Bode law),[5] but no such theory has been accepted.

Most of the planets in the Solar System possess secondary systems of their own. Many are in turn orbited by planetary objects called natural satellites, or moons, some of which are larger than planets. Most of the largest natural satellites are in synchronous rotation, with one face permanently turned toward their parent. The four largest planets, the gas giants, also possess planetary rings, thin bands of tiny particles that orbit them in unison.

Solar. Discovery and exploration......

Discovery and exploration......

For many thousands of years, humanity, with a few notable exceptions, did not recognise the existence of the Solar System. They believed the Earth to be stationary at the centre of the universe and categorically different from the divine or ethereal objects that moved through the sky. Althoug the Indian mathematician-astronomer Aryabhata and the Greek philosopher Aristarchus of Samos had speculated on a heliocentric reordering of the cosmos,[1] Nicolaus Copernicus was the first to develop a mathematically predictive heliocentric system. His 17th-century successors Galileo Galilei, Johannes Kepler, and Isaac Newton developed an understanding of physics which led to the gradual acceptance of the idea that the Earth moves around the Sun and that the planets are governed by the same physical laws that governed the Earth. In more recent times, improvements in the telescope and the use of unmanned spacecraft have enabled the investigation of geological phenomena such as mountains and craters and seasonal meteorological phenomena such as clouds, dust storms and ice caps on the other planets.

Solar System..........

Solar System..........
The Solar System[a] consists of the Sun and those celestial objects bound to it by gravity, all of which formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. The Sun's retinue of objects circle it in a nearly flat disc called the ecliptic plane, most of the mass of which is contained within eight relatively solitary planets whose orbits are almost circular. The four smaller inner planets; Mercury, Venus, Earth and Mars, also called the terrestrial planets, are primarily composed of rock and metal. The four outer planets, Jupiter, Saturn, Uranus and Neptune, also called the gas giants, are composed largely of hydrogen and helium and are far more massive than the terrestrials.

The Solar System is also home to two main belts of small bodies. The asteroid belt, which lies between Mars and Jupiter, is similar to the terrestrial planets as it is composed mainly of rock and metal. The Kuiper belt (and its subpopulation, the scattered disc), which lies beyond Neptune's orbit, is composed mostly of ices such as water, ammonia and methane. Within these belts, five individual objects, Ceres, Pluto, Haumea, Makemake and Eris, are recognised to be large enough to have been rounded by their own gravity, and are thus termed dwarf planets. The hypothetical Oort cloud, which acts as the source for long-period comets, may also exist at a distance roughly a thousand times beyond these regions.

Within the Solar System, various populations of small bodies, such as comets, centaurs and interplanetary dust, freely travel between these regions, while the solar wind, a flow of plasma from the Sun, creates a bubble in the interstellar medium known as the heliosphere, which extends out to the edge of the scattered disc.Six of the planets and three of the dwarf planets are orbited by natural satellites, usually termed "moons" after Earth's Moon. Each of the outer planets is encircled by planetary rings of dust and other particles.

Solar System.......Applications of solar technology

Applications of solar technology......
Solar energy refers primarily to the use of solar radiation for practical ends. However, all renewable energies, other than geothermal and tidal, derive their energy from the sun.Solar technologies are broadly characterized as either passive or active depending on the way they capture, convert and distribute sunlight. Active solar techniques use photovoltaic panels, pumps, and fans to convert sunlight into useful outputs.

Passive solar techniques include selecting materials with favorable thermal properties, designing spaces that naturally circulate air, and referencing the position of a building to the Sun. Active solar technologies increase the supply of energy and are considered supply side technologies, while passive solar technologies reduce the need for alternate resources and are generally considered demand side technologies.

Solar energy...

Solar energy.........
Solar energy is the radiant light and heat from the Sun that has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar radiation along with secondary solar resources such as wind and wave power, hydroelectricity and biomass account for most of the available renewable energy on Earth. Only a minuscule fraction of the available solar energy is used.Solar power provides electrical generation by means of heat engines or photovoltaics.

Once converted,its uses are limited only by human ingenuity. A partial list of solar applications includes space heating and cooling through solar architecture, potablewater via distillation and disinfection, daylighting, hot water, thermal energy for cooking, and high temperature process heat for industrial purposes.Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute sunlight.

Active solar techniques include the use of photovoltaic panels and solar thermal collectors (with electrical or mechanical equipment) to convert sunlight into useful outputs. Passive solar techniques include orienting a building to the Sun, selecting materials with favorablethermal mass or light dispersing properties, and designing spaces that naturally circulate air.

Solar System.......(Who is here...........)

My New Picture.......

Solar System.......Energy storage methods.

Energy storage methods.

Solar energy is not available at night, making energy storage an important issue in order to provide the continuous availability of energy.[62] Both wind power and solar power are intermittent energy sources, meaning that all available output must be taken when it is available and either stored for when it can be used, or transported, over transmission lines, to where it can be used. Wind power and solar power can be complementary, in locations that experience more wind in the winter and more sun in the summer, but on days with no sun and no wind the difference needs to be made up in some manner.

Solar energy can be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store enough heat in its 68 m³ storage tank to provide full output of 10 MWe for about 40 minutes, with an efficiency of about 99%.
Off-grid PV systems have traditionally used rechargeable batteries to store excess electricity. With grid-tied systems, excess electricity can be sent to the transmission grid. Net metering programs give these systems a credit for the electricity they deliver to the grid. This credit offsets electricity provided from the grid when the system cannot meet demand, effectively using the grid as a storage mechanism. Credits are normally rolled over month to month and any remaining surplus settled annually.

Pumped-storage hydroelectricity stores energy in the form of water pumped when surplus electricity is available, from a lower elevation reservoir to a higher elevation one. The energy is recovered when demand is high by releasing the water: the pump becomes a turbine, and the motor a hydroelectric power generator.
Combining power sources in a power plant may also address storage issues. The Institute for Solar Energy Supply Technology of the University of Kassel pilot-tested a combined power plant linking solar, wind, biogas and hydrostorage to provide load-following power around the clock, entirely from renewable sources.

Solar System.......Development, deployment and economics...

Development, deployment and economics...

Beginning with the surge in coal use which accompanied the Industrial Revolution, energy consumption has steadily transitioned from wood and biomass to fossil fuels. The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. However development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.

The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.[44][45] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE).

Between 1970 and 1983 photovoltaic installations grew rapidly, but falling oil prices in the early 1980s moderated the growth of PV from 1984 to 1996.[citation needed] Photovoltaic production growth has averaged 40% per year since 2000 and installed capacity reached 10.6 GW at the end of 2007,[27] and 14.73 GW in 2008.[47] Since 2006 it has been economical for investors to install photovoltaics for free in return for a long term power purchase agreement. 50% of commercial systems were installed in this manner in 2007 and it is expected that 90% will by 2009.[48] Nellis Air Force Base is receiving photoelectric power for about 2.2 ¢/kWh and grid power for 9 ¢/kWh.

Commercial concentrating solar thermal power (CSP) plants were first developed in the 1980s. CSP plants such as SEGS project in the United States have a levelized energy cost (LEC) of 12–14 ¢/kWh.[51] The 11 MW PS10 power tower in Spain, completed in late 2005, is Europe's first commercial CSP system, and a total capacity of 300 MW is expected to be installed in the same area by 2013.

Solar System.......Experimental solar power.....

Experimental solar power....

A solar updraft tower (also known as a solar chimney or solar tower) consists of a large greenhouse that funnels into a central tower. As sunlight shines on the greenhouse, the air inside is heated, and expands. The expanding air flows toward the central tower, where a turbine converts the air flow into electricity. A 50 kW prototype was constructed in Ciudad Real, Spain and operated for eight years before decommissioning in 1989.

Thermoelectric, or "thermovoltaic" devices convert a temperature difference between dissimilar materials into an electric current. First proposed as a method to store solar energy by solar pioneer Mouchout in the 1800s,[40] thermoelectrics reemerged in the Soviet Union during the 1930s. Under the direction of Soviet scientist Abram Ioffe a concentrating system was used to thermoelectrically generate power for a 1 hp engine.

Thermogenerators were later used in the US space program as an energy conversion technology for powering deep space missions such as Cassini, Galileo and Viking. Research in this area is focused on raising the efficiency of these devices from 7–8% to 15–20%.

Solar System.......(Photovoltaics............)

Photovoltaics............

A solar cell, or photovoltaic cell (PV), is a device that converts light into electric current using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s.[18] Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery.[19] Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the silicon solar cell in 1954.[20] These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%.

Solar power has great potential, but in 2008 supplied less than 0.02% of the world's total energy supply. There are many competing technologies, including fourteen types of photovoltaic cells, such as thin film, monocrystalline silicon, polycrystalline silicon, and amorphous cells, as well as multiple types of concentrating solar power. It is too early to know which technology will become dominant.


The earliest significant application of solar cells was as a back-up power source to the Vanguard I satellite in 1958, which allowed it to continue transmitting for over a year after its chemical battery was exhausted.[23] The successful operation of solar cells on this mission was duplicated in many other Soviet and American satellites, and by the late 1960s, PV had become the established source of power for them.[24] Photovoltaics went on to play an essential part in the success of early commercial satellites such as Telstar, and they remain vital to the telecommunications infrastructure today.


Building-integrated photovoltaics cover the roofs of an increasing number of homes.The high cost of solar cells limited terrestrial uses throughout the 1960s. This changed in the early 1970s when prices reached levels that made PV generation competitive in remote areas without grid access. Early terrestrial uses included powering telecommunication stations, off-shore oil rigs, navigational buoys and railroad crossings.[26] These off-grid applications accounted for over half of worldwide installed capacity until 2004.


The 1973 oil crisis stimulated a rapid rise in the production of PV during the 1970s and early 1980s.[28] Economies of scale which resulted from increasing production along with improvements in system performance brought the price of PV down from 100 USD/watt in 1971 to 7 USD/watt in 1985.[29] Steadily falling oil prices during the early 1980s led to a reduction in funding for photovoltaic R&D and a discontinuation of the tax credits associated with the Energy Tax Act of 1978. These factors moderated growth to approximately 15% per year from 1984 through 1996.


Since the mid-1990s, leadership in the PV sector has shifted from the US to Japan and Europe. Between 1992 and 1994 Japan increased R&D funding, established net metering guidelines, and introduced a subsidy program to encourage the installation of residential PV systems.[31] As a result, PV installations in the country climbed from 31.2 MW in 1994 to 318 MW in 1999,[32] and worldwide production growth increased to 30% in the late 1990s.


Concentrating photovoltaics in Catalonia, Spain.Germany became the leading PV market worldwide since revising its Feed-in tariff system as part of the Renewable Energy Sources Act. Installed PV capacity has risen from 100 MW in 2000 to approximately 4,150 MW at the end of 2007.[34][35] After 2007, Spain became the largest PV market after adopting a similar feed-in tariff structure in 2004, installing almost half of the photovoltaics (45%) in the world, in 2008, while France, Italy, South Korea and the U.S. have seen rapid growth recently due to various incentive programs and local market conditions.[36] The power output of domestic photovoltaic devices is usually described in kilowatt-peak (kWp) units, as most are from 1 to 10 kW.


Concentrating photovoltaics are another new method of electricity generation from the sun. Concentrating photovoltaics (CPV) systems employ sunlight concentrated onto photovoltaic surfaces for the purpose of electrical power production. Solar concentrators of all varieties may be used, and these are often mounted on a solar tracker in order to keep the focal point upon the cell as the Sun moves across the sky. Tracking is not required for concentrations of less than 2 to 5, but does increase flat panel photovoltaic output by up to 20% in winter, and up to 50% in summer.[38]

Solar System.......(Concentrating solar power)

Concentrating solar power


Solar troughs are the most widely deployed.A legend claims that Archimedes used polished shields to concentrate sunlight on the invading Roman fleet and repel them from Syracuse.[7] Auguste Mouchout used a parabolic trough to produce steam for the first solar steam engine in 1866.



Concentrating Solar Power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. The concentrated heat is then used as a heat source for a conventional power plant. A wide range of concentrating technologies exists; the most developed are the parabolic trough, the concentrating linear fresnel reflector, the Stirling dish and the solar power tower. Various techniques are used to track the Sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage.



A parabolic trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector's focal line. The receiver is a tube positioned right above the middle of the parabolic mirror and is filled with a working fluid. The reflector is made to follow the Sun during the daylight hours by tracking along a single axis. Parabolic trough systems provide the best land-use factor of any solar technology.[10] The SEGS plants in California and Acciona's Nevada Solar One near Boulder City, Nevada are representatives of this technology.[11][12] The Suntrof-Mulk parabolic trough, developed by Melvin Prueitt, uses a technique inspired by Archimedes' principle to rotate the mirrors.[13]

Concentrating linear fresnel reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating linear fresnel reflectors can be used in either large or more compact plants. A stirling solar dish, or dish engine system, consists of a stand-alone parabolic reflector that concentrates light onto a receiver positioned at the reflector's focal point. The reflector tracks the Sun along two axes. Parabolic dish systems give the highest efficiency among CSP technologies.[16]


The 50 kW Big Dish in Canberra, Australia is an example of this technology.[11] The stirling solar dish combines a parabolic concentrating dish with a stirling heat engine which normally drives an electric generator. The advantages of stirling solar over photovoltaic cells are higher efficiency of converting sunlight into electricity and longer lifetime.A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers are more cost effective, offer higher efficiency and better energy storage capability among CSP technologies.[11] The Solar Two in Barstow, California and the Planta Solar 10 in Sanlucar la Mayor, Spain are representatives of this technology.



Solar Power

Solar power is the conversion of sunlight into electricity. Sunlight can be converted directly into electricity using photovoltaics (PV), or indirectly with concentrating solar power (CSP), which normally focuses the sun's energy to boil water which is then used to provide power. The largest solar power plants, like the 354 MW SEGS, are concentrating solar thermal plants, but recently multi-megawatt photovoltaic plants have been built. Completed in 2008, the 46 MW Moura photovoltaic power station in Portugal and the 40 MW Waldpolenz Solar Park in Germany are characteristic of the trend toward larger photovoltaic power stations. Much larger ones are proposed, such as the 550 MW Topaz Solar Farm, and the 600 MW Rancho Cielo Solar Farm.
Solar power is a predictably intermittent energy source, meaning that whilst solar power is not available at all times, we can predict with a very good degree of accuracy when it will and will not be available. Some technologies, such as solar thermal concentrators with an element of thermal storage, have the potential to eliminate the intermittency of solar power, by storing spare solar power in the form of heat; and using this heat overnight or during periods that solar power is not available to produce electricity. This technology has the potential to make solar power "dispatchable", as the heat source can be used to generate electricity at will. Solar power installations are normally supplemented by storage or another energy source, for example with wind power and hydropower.

Solar System.......Technology and Power

New World of Technology and Power......