Along with light, the Sun radiates a continuous stream of charged particles (a plasma) known as the solar wind. This stream of particles spreads outwards at roughly 1.5 million kilometres per hour, creating a tenuous atmosphere (the heliosphere) that permeates the Solar System out to at least 100 AU (see heliopause).This is known as the interplanetary medium. Geomagnetic storms on the Sun's surface, such as solar flares and coronal mass ejections, disturb the heliosphere, creating space weather. The largest structure within the heliosphere is the heliospheric current sheet, a spiral form created by the actions of the Sun's rotating magnetic field on the interplanetary medium.
Aurora australis seen from orbit.Earth's magnetic field stops its atmosphere from being stripped away by the solar wind. Venus and Mars do not have magnetic fields, and as a result, the solar wind causes their atmospheres to gradually bleed away into space.The interaction of the solar wind with Earth's magnetic field funnels charged particles at right angles to the Earth's upper atmosphere, where its interactions create aurorae seen near the magnetic poles.Cosmic rays originate outside the Solar System. The heliosphere partially shields the Solar System, and planetary magnetic fields (for those planets that have them) also provide some protection. The density of cosmic rays in the interstellar medium and the strength of the Sun's magnetic field change on very long timescales, so the level of cosmic radiation in the Solar System varies, though by how much is unknown.The interplanetary medium is home to at least two disc-like regions of cosmic dust. The first, the zodiacal dust cloud, lies in the inner Solar System and causes zodiacal light. It was likely formed by collisions within the asteroid belt brought on by interactions with the planets.The second extends from about 10 AU to about 40 AU, and was probably created by similar collisions within the Kuiper belt.